
t-E L E1 -C

J~FEB 14W9 19m,

_ -I-UIN-TTE~ i A

IApproved for public relteasel
IDistribution Unlimnitepd

Os1910 Forest Drive 0 Annapolis, Md. 21401 0 (301) 288-6150

LJA



196-3

NOTES ON .

THE THEORY OF HEAVE ATTENUATO

by

'4eer R a ]ne

U I

,\ a32 i980

i" A

/" "" - i'. l , c releao

1910 Forest Drive Annapolis, Md. 21



SECURITYV CLASSIFICATION OF THIS PAGIL(WW Dat. EntmoO

4

SECURtITY CLASSIFICATION OF THIS PAOS(SWOR bata SO~MOE0



*ftWfEtihin CLASSFICATION Of THIS PAGE Mena Dfto 3Ifm*

I. EPRT REPORT DOCUMENT# TION PAGE NO FRZ COMILUTIO OU
REOTNUMBER *GOVT ACCESSION NO RECIPIENT'S CATALOG UMBER

W. P. No. 196-3_______________
1. 4TITLE (and SuabiItle) S. TYPE OF REPORT & PERIOD COVERED

Notes on the Theory of Heave

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 40. CONTRACT OR GRANT NUMBERU'.)

Peter R. Payne -N9OM -76-C-1761

9. PERFORMING ORGANIZ~71ON NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Payne Inc.AREA S. WORK UNIT NUMBERS

Annapolis, Maryland 21401

1I. CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT DATE

July 1976
13. NUMBER OF PAGES

38
14. MONITORING AGENCY NAME & ADORESS(if different from Controling Office) IS. SECURITY CLASS. (of this repoI)

Unclassified
15Sk. DECLASSIFIrCATION DOWNGRADING0

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thie Report)

Un1liited and approved for Public release.

17. DISTRIBUTION STATEMENT (of the abeeract enfered hi Blck 20. If dffe~rent from Report)

18. SUPPLEMENTARY NOTES

This report used by 0P96V in their study: Advanced Naval
Vehicle Cionceps Evaluation.

19. KEY WORDS (Continue on reverse side it nOcessary and Identify by block number)

-4Advanced Nava-l Vehicle Concepts, Ride Quality of Naval Vehicles
Evaluation ACV

ANVM SES

eithr cshin ar dmpig o flw mdulating fn.Shortageoftrha
prevnte a ompete nalsisof cmeaspects, particularly for the modu-

lated flow case which is of nx~st practical interest. Power requireamets
have been calculated for 10%haeattenuation only in the latter case and
the values obtained are naual eylarge. More work rmdto be dame
on the partial alleviation case, which is of nmr practical interet\

DD .1473 EDONo OF 1 NOV SS515 OBSOLETE ISSF

Ll SECUIRITY CLASSIFICATION OP TWOS PAGE (Wam ~ate



Table of Contents

page

Abstract 1

Introduction 2

iThe Cushi~n Volume4

The Cushion Pressure 6

Heave Motion for Incompressible Flow 10

References 29

Appendix I - Fan Characteristics 30

Appendix II - The Compressible Equation for Ap 33

Appendix III - A Simple Check on Fan Modulation Powerj for 100% Attenuation 37

'C



i

r

ABSTRACT

This note examines the power required for heave attenuation of SEV, using
either cushion air dumping ot flow modulating fans. Shortage of time has
prevented a complete analysis of some aspects, particularly for the modulated
flow case which is of most practical interest. Power requirements have been
calculated for 100% heave attenuation only in the latter case and the values
obtained are naturally very large. More work needs to be done on the partial
alleviation case, which-is of more practical interest.

The paper first establishes the cushion volume change in a sinusoidal sea
and from this calculates the instantaneous pr9ssure. The so-called "compresi-
bility terms" increase in size by a factor L / 2 (where L is the cushion length)
when Froude scaling, but this is due to speed, not size. They are also
dependent on the fan characteristics, and vanish if Sp/3Q = 0. They do not
exist, therefore, in the case of 100% heave attenuation by fan modulation.
Even when they do exist, it is not clear that they necessarily increase
the dynamic cushion pressure excursions.

Partly for this reason, and partly because compressibility terms complicate the
analysis, the heave motion is then solved for the incompressible case only.
Simple equations are obtained for the power dissipated in heave attentuation.

The power requirement of a fan flow modulation Heave Attenuation System (HAS)
appears very sensitive to the total head losses which occur between the fan
and the cushion, and to vehicle speed.

It is believed that this note establishes the feasibility of studying HAS
dynamics analytically and thus establishing broad trends and identifying
potentially optimum solutions. But there have been insufficient time available
to go all the way to these final objectives in this first look at the problem.
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IWMRODUCTION

The purpose of this paper is to investigate the approximate air supply
requirements of an ACV/SES in regular waves, in a simple yet realistic manner.
One of the first such analyses was by Beardsley1, who considered only the
"platforming" case over sinusoidal waves. Subsequent analyses have included
many variables so that solutions can only be obtained numerically. It is
the intent of this present paper to bridge the gap, to a certain extent,
between the rather extreme simplifications of Beardsley and the more sophisti-
cated computer studies, without losing the virtues of simplicity and closed
form solutions.

Since our purpose is to obtain approximate "order of magnitude" results, we
first note (Figure 1) that the parameter

Poqo = (W/S)% a N

or
Po% %
POO= - - costant, approximately

Here p0 and Q. are the equilibrium values of the cushion pressure and air
volume flow. As shown in Figure 1, most vehicles fall in the range

4 > - (ft lb/sec)N 4

po0 is the measure of the energy lost in the leaking cushion air. Thus,
a w 1 -sealed SES tends to have low values; ACV's with a large clearance gap
have high values.

2
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THE CUSHION VOLUME

OF

hw

L

Figure 2. Basic Geometry.

We assume a craft, at forward speed u , heading into a sinusoidal sea. The craft
planform is rectangular, of length L Lnd beam B, and is assumed to be incapable

- 1 ot pitching. The "air gap" is negligible in relation to the cushion height H.

The local wave elevation is

h =hw sin 2w tJ (o~ (1)

At a given time t, the cushion volume will be

V = LBH h hBXJ sin 2w x + tj d (x/AX) (2)

hwBX L (u 0+u W))
=LBH --. cos 2wr~ t o 2

= LBH 2rB !sn 1(,A cs 2w(L/A) - 1J2 sin[3~D t+

(where *lis a phaso angle, and is not important, and U uo + U., the pe
relative to the waves.) Continuing the redution:0 w espd

4,_ _ _ -1



V =LBH - hi[2 BAX t+# 3

We pause here to note that, for comparison with simple "piston theory," the

displacement (6) of the "wave piston" is given by

6 2 1-o v3 2 w( /).] si 2 (/X)t + #

sin w(L/X) .i[, (UX (4)

This is the result given (for example) by Mantle. 2

Returning to equation (3), the rate of change of cushion volume is

dV LB dH h fsi wL/)] 2w (U/X) cos2ir(U/I) t + #lJ

I, = LB[ -H AhwF(L/X) cos (Qlt + .) 5

'1 when 0 2w(IJ/.), the frequency of wave encounter in rads/sec.

and F (L/AX) = sin wr(L/AX)
w(L/A)

We shall show later that the heave term dH/dt is generally negligible by
comparison with the cos fit term. The phase angle *imay usually be ommitted,
since it can be made zero by a suitable selection of zero time.

S



THE CUSHION PRESSURE

Let
PC + p, = absolute cushion pressure

p0 + p, = absolute cushion pressure under equilibrium conditions

F =fan volume flow rate

Qo = fan volume flow rate under equilibrium conditions

m0 = mass of air in the cushion under equilibrium conditions

m= air mass flow rate into the cushion (sum of flows in and out)

V0  cushion volume under equilibrium conditions

00

t =o at an equlibrium conditions

At any time t the density of the cushion air is

P - o ~i (6)

For adiabatic conditions

1 p~ /y = t * 7

I tV P + In/Y

f. i o~ dt V (p p )- l

Differentiating with respect to time

1 dV _ _ _ + p c1/p w l/ y-I dp
i n ~~ P oo__ _ _ _( ~ ( 8 )

rnV- P dPo~p +Vpp \p.pdt

Sincei =m p
0 00o

=~ ~ +- 'cm *dV +

P.. P 0(p+p/ [L y(P~p 0  dt

6



c (Pt /Y (V (9)

= Ed for incompressible'flow (y - O

If it is assumed that PC = p0 + Ap and that Ap/p., << 1, then equation (9)
becomes

* 1.
(!o + IJ p -t (9a)

p P. IYclt go0  p dt

The flow out of the cushion through the leakage area (a) is

Qj :-- a avf(2/p) (p 0+,&p)

The flow into the cushion from the fan, (neglecting inertia terms) is

F ' o + p'&

Making these substitutions in equation (9)

Ap )(1/yp l/Y-l
Q+ 5PAp -av'(2/Pd =p + 1) dv V (Po+i a? (10)ILo Y d.pM

here V and dV/dt are given by equations (3) and (5). This equation cannot be
solved explicitly for Ap, even though it is first order, because of the square
root. An approximate solution is discussed in Appendix 11.

Some convenient non-dimensionalizations are

Qo 1 dv
p0  aQ - oUt (10a)

3 Q/ap is not a true partial derivative (as witness its subsequent inversion)
but the notation used is the most familiar in the literature. In retrospect
th6 fhoke~e~rAl expression'2

Ap c 0 + c 1QP + 'c2Q.F

-might lead to a more general, and thus more useful result.

74



Equation (10) then has the alternative form

(1 +- ,f~I P . po /P. )l/Y-l V (1
I + 1 _ + AP/P° = &(I+p°/p.)I + p°  o y (dt

The terms in the brackets are the so-alled "non-scaling" and "compressibility"
terms. (For example, see Lavis, et al ). The curly bracket is equal to zero
for incompressible flow (y 4 c), the'lnon-scaling" term equals unity,

If fan modulation is employed to eliminate heave, dp/dt Q, then an incompres-
sible flow analysis is in error by the factor (po/p., + 1)1Y, i.e.

if PO = 10 50 100 200 lb/ft2

(Po/P +1 ) 1/y 1.003 1.017 1.034 1.067

This is small enough to be neglected in an analysis of the present type. For-
mally, one can account for it by assuming a wave height which is lower by this
factor.

On the other hand, without attenuation, we shall find (equations 18 and 18a) that
for incompressible flow, approximately

so that

Equation (10) then becomes, approximately

1 (/ P6cP.)() d
1 vl+AP/P 0  

=  (1+p/p.)t/Y i_ -!- F

Substituting equations (3) and (5) for V and dV/dt, and assuming that craft
heave motion is small compared to wave motion, so that LB.CdH/dt)
is negligible compared with dV/dt



I + G ( l+Po/p=-) / ClPP. 2_ sin At

C' + " T  8 O 0 YI 2 I 0 sin Ot/ 1

- F(L/X) sin2nt] (12)

where

G=LBhwQ hw hG = FCL/X) = 2w I LB- 2w- - W

Several points are apparent from this result:

1. The "compressibility term" gives a phase shift and, even
on these simple assumptions, introduces both a constant
term and a second harmonic.

2. Since G is independent of scale, there is no significant
scale effect for constant po/p.,

but

3. Since G varies with absolute speed, it does become
important when Froude scaling; it increases as /U, so
comparing a 30th scale model to full size, C is five times
as much in the full scale case. And since, in Froude
Scaling, cushion-pressure must vary with length, the total
variation is as L/2, for a total factor of 164 in the
example of a 1/30th scale model.

4. The "compressibility term" will not be important if the fan
characteristic parameter C is small. It will be zero if
ap/Qq = 0. In practical applications, the parameter C varies
between 0 and -2.

S. Because of complex phase shift effects, the compressibility
terms may either attenuate or increase the heave acceleration,
depending on the precise values of the parameters. We show
in Appendix II that if the heave velocity dH/dt can be con-
sidered negligible, compressibility will always attenuate the
ride. It's therefore important to understand this effect, and
design (so far as other factors allow) for a favorable effect.

6. The phase shift in peak pressure will generally result in
an increased heave attenuation System (HAS) power requirement.

In view of these considerations, the work which follows will ignore the "1com-
pressibility" term, and consider only incompressible flow.

.9



HEAVE MOTION FOR INCOMPRESSIBLE FLOW

For incom~pressible flow equation (12) becomes

2 Q 0 p~ (13)v
a -(p +Ap) Q=

p 0 i p T

Again, let

Q a

I AV

Qo dt(14)

Then

And since

2p

*v P

1 k + E (16)

* Squaring both sides we obtain the quadratic

4 [21-) -Q+(1 ~) ~ =0 (17)

The plus root is taken in this case.

10



as =(- )
0 (18a)

Equations (18) and (18a) are plotted in Figure 3. Now if M is the vehicle's
mass (PWg) and S (=LB) its cushion area thd heave equation of motion is

=_ S(po +&p) -W
dt,

A.A

A L &P g S & gA. (19)

dH
Then from equations (5),- (14) and by integrating equation (19) to obtain -

= 1 f&p dt - hwF L osa

IH Ap dt IKw cos Ot (20)

where

K w
wo

Substituting equation (20) for C into (16)

I + - f Apdt Kcos nt (21)
PO PO PO



EXAPT SOLUTION (EQUATION IS)

(EQUATION I90)

-1.5

-0.

0.

0
0405t 15-.
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r
Rearranging

y'H-Apdt = 1+1A + K cost-1+
PO C PO P0

Differentiating with respect to time

=pQ~ sin At d

P ItP K2 sin at (22)• ; 2 d t -w

12 pe

or

dt Zp = Z2 sin ft

where

z H (23)
S2 •1 E

z PoQKW

1 1o

13



If we formally restrict the analysis to Ap << po

Z- = _ 2 _ w
2- ] % 2-(I) g P2c %

2 [2 -r. A %2r

and

Ap e [ez 2 sin at dt C

2 Cos t APoe (24)
9a

Thus for steady-state conditions (no transients)

AR=- (Sh ") IL 2r o t (25)

So finally, noting (19) and comparing equation (25) with the equivalent

"piston motion" of equation (4) we get the rather simple result

II craft acceleration (,L(26)

6 piston acceleration = 12

Comparing (25) with (18a) we see that they are identical, if the dH/dt
term in equation (5) is dropped. So, to a first order, we may neglect the
heave motion of the vehicle in computing the air flow into and out of the
cushion.

* From (18a) and (5)

PO 2 dt C) F UOS Q0

14



The transient term in equation (24) is independent of the forcing term Z2 ,
and if h =O, Z2  0 and

zIt
AP Apoe (27)

where

zI Q0 ([2 2 C]

Thus the motion will be unstable if 0 < € < +2; a known result.* For all other
values Z < 0 and the transient decays, so that the motion is stable.

Heave Attenuation by Dumping

Let 6 = Oit and the suffixes o and D refer to dump valve shut and open.
Ap is the pressure differential when the dump valve opens (at Oit = 01)
ani Ap2 the valve when it closes, as indicated in Figure 4.

By definition

Qo = a F~o [Equation (16)]

Also

Q= a D pP

where a D is the normal leakage area plus the dump valve area.

Q( [corresponding to ZI in

~equation (23)]

A r

*A result first noticed by Walker4'5
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Figure 4. Variation of Cushion Pressure with Active Ride Control.
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Sh w 1  f l 2

0 ° - - C0 I [corresponding to

ZZ/p S in (28)sh w 0 (L X 2 \ ;;?ion (23))n

when the dump valve is closed

z At
Ap = -PoZo cos 0 + AP2e [corresponding to

0 02

and open eqaio (4 29)

A p=-oZD cos e+ APlezD t

O - 02

At2  =

e - e

At1  U

So at the point of opening the dump valve, at 1

ApI -Po Zo cos 01 + Ap2  OZ/Q(ji-02)] (30a)

at the point of closing the dump valve, at 02

Ap2  = +poZD Cos 2+ Aple[zD/2 -1)] (30b)

By substituting in (30a) for Ap2 from (30b)

rD zo

Apl -PoZo cos 01 -PoZD cos 82 AP e e 01-2



I o 0Z 0
- ~~~ ~ ~ e -e~. )e2e

e a 0 2p e co 2
1Po Zo Cos 01 + DCs2

z

cos ZDa (a 00)
A (Ao1  1 + y Dcos e2 e 2

Zpj Z0 e(ZD 1)8(01 -e (31)

Similarly, substituting for Ap, in (30b)

ZDD

A p2  z 1 1z0 2(32)

So b seectng alus fo 01 6 nd n/Zwe can compute Ap and Ap2
and hence evaluate eutos(R Bcs of the exponential terms 2

we cnnoteasiy obain axim anayti (31).The portion of the solution

z0
[cos e ZDR o 0D

z DCos 8,+ 1 + -c0 2  e nJ-0

L z0 2- 1 (33)

It's cla htthe maxima must be sought graphically or iteratively; which it
easy tod ycomputer, of course. Note that the variables are four in number



i.e. ( = f e2 ZozD)
PO

A Solution in Which the Transient Terms are ignored

In this case, when the dump valve is open [from equation (29)]

p ZD Cos 9 (34)

Pomax

And the attenuation ratio is ( Pm ax)D ZD
rmxo Z0

We open the dump valve when Ap is equal to the maximum value of Ap which
will occur with the dump valve open.

i.e. (=) Px = Cos 1 -ZD

PO max

CosO - _ZD

0

2

sin 0 = 1

Also, from Figure 4

0 2 = 2w - 61

so that

sin e 2  = -sin e 1

The instantaneous power lost through the dump valve is

PD = h mD (Po + Ap) = I P(aD - a)( p 2 po

a-lip((a -2( .) (ZD O cS e) [from equation 34] (35)

19



Averaged over one cycle this is, as a ratio of equilibrium power

IDAV - [e (8 1 ZD(sin 02 sin

p 1 1 2 2 1)

0

SZD Zi (36)

Thus the power ratio is not a simple function of area ratio, aD/ao, but depends
upon the attenuation ratio:

) D
= peak acceleration with HAS

0 peak acceleration without HAS)

and 'D" (=leakage and dump area

a leakage area

S h w A (I = (pand Z D aD F(L)(2g2P

a /oN2P max

There is therefore no simple way to present this result unless we assume

4D = Co, so that

a D .ZO
(37)a zD

Then

PDAV 1 2(38)Po T- + Po (38)
0 0 0

*HAS m Heave Attenuation System.



/

- and only the second term depends upon the details of the ship and waves.
These two terms are plotted in Figure 5. The second term may generally be
neglected, except under very rough conditions, when large accelerations
are experienced with the HAS activated.

Attenuation with a Variable Supply Fan

Heave attenuation can also be provided by a variable pitch fan, or any one of
several other ways of modulating the fan's flow. In this section, we assume
that the modulation is loss-free.

The flow required from the fan is

dV a 3 (pp) (a version of equation 13)Q d = +a o+Ap)

dV +./ (39)

The total head rise through the fan itself is

=p 0 (l +~r) 1 nT) 35 (-Q (0
PO A

where (1 - n.T) is the total head loss divided by the dynamic head.

Let nF the fan dfficiency 'HQ (=0.8)

L = the total lift system efficiency ( poQo/P 0.4)

2

__ ____ A AHl (1 - 1T)

'L = P /0 A1 (from equation 40)
**F P AHo

2
PO+= [Poo) P(10) Y

• " ( - T ° - "o " °



Power Increment Required for Heave Attenuation

AP Power Increment A = i 2

P Cam Water Power P - p-
0 0 0

C = Peak Acceleration (in g's) with HAS active.

Al

AR I

0 P0

0 02040.6 0.8 1.0
HEAV ATTNUATON * PEAK ACCEL. WITH H.A.S.
HEAV ATENUAION PEAK ACCEL. WITHOUT H.A.S.

Figure S. Power Required for Heave Attenuation by Dumping.
(The A 2 parameter must be multiplied by G before substitution
in the equation for AP/P .)p

22



2

01 Q) 2 IML P, (-" i) p0  say (41)

Reverting to equation (40) the instantaneous power required is given by

= AHQ - +o I po( 2 o

(42)
L 1 dV as beforeLet =Qo dt

q + A+ R (42a)

p p0

Then

S9 = + q) (from equation 39)

- = [q + §  q)2 (C + q)

q(C + q) + §(E + q) (43)

This implies that when AH > 0 and Q < 0 (or visa-versa) the fan abstracts
power from the air like a windmill, which may not be realistic unless a flywheel
is used. Note from (39) and (40) that although Q can be negative, AH
cannot. Thus the equation (40) relationship for AH requires modification
when Q 0.

Now for sinusoidal waves we have, from (20)

_L dV
= = K cos Ot = Kw cos O (44)

23



where Soh S FhLF (44a)

w Qo as before.

and from equations (25), (42a) and (36a)

q - 1+p = l-pcos ft = -p cos 0 (45)P0

Substituting for q and & in equation (43)

Po- = c - p cos 0)M + Mc - P) cos 0] + §[l ( - p ) cos 8]

- 1 - 1 cos 0+ C'w -( ) cos 0 - (K - ) 3cos2e.

+ §fl + 3(K -) cos e + 3(Kw - i)2 cos 2  + (JCo -)o
cose

(46)

The average value of the power parameter F P/PoQo , will be21rl

2 ff(O) do

0 2
and only.the constants and the cos 0 terms contribute

PAV (.1 §)- + cK 2 (47)P 2
(Equilibrium Value) + increase due to waves and heave attenuati

For complete alleviation of heave

S (Ap/po)max  f 0

omax



and IP l T' + K2(48)
'OQO1 TL 2 'nL I

P=0

AHA_ Pwet Eliminate Heave 3 2 !

,- ~Note that if x = nno power would be required.* The more efficient thedlift system du and diffusion system, the less the penalty.

:'1 Without heave attenuation the maximum acceleration would be (from 25)

o --P Equilibrium-Po- e
0 L

3= (1fT say, (SO)

So if z is the heave attenuation ratio

L making this substitution in (47) putting | = (hF/nL - 1) (equation 40) and
rearranging gives

VoA _ ' _ 3 - l " [ w 1 - -fc )J - 2z f(co [1 - zf(O)l (51)

23 (1 Tv [j T)

Strictly true i f np 1.0 or if there is no reverse flow through the fan. WhenS. and reverse flow occurs, the fan absorbs too much energy, by a factor
o f / in this analysis.

........ ...... ... . . ...= . ... . .. ...... . .. ...... .. ........ .. .- - ... ..... . . . .. .... . .. . .. . .. ..M . . . . . . . . . .



As nFP av/Po% = equilibrium value n= IF/L) plus the increment APA/Po0 %, we
see that

APHAS KW 2 ~3(1 - -)LjR - zf(0)12  
-[ zf(0)] (S2)

This is finite even for no attenuation (z 1)

If z =1 and n L =F

- K [l-(~)](52a)

-implying a reduction of poyver in waves if f(C) x 1, which it usually
is. But for practical cases, there is an increase in fan power due to waves
if (from equation 52)

-zf(c) > 1

(,2 > say) (53)

-which in general will always be true.

For the purpose of obtaining a rough estimate we consider only the case of
complete alleviation, so that, from equatiors (44a) and (48), the additional
power required is

0 2)r1h)Q ! ( (lb ft/sec) (S4)

APHAS 3 GL V ) FG 2' (ft/sec) (55)



This is plotted in Figure 6 for typical values. It's clear that complete
suppression of heave is much too expensive of power at high speed on the
assumptions used in this analysis. We should examine the implications of
equation (52) more closely to see what the trade-offs are for partial
alleviation.
is very severe.

For comparison, simple (zero leakage, loss-free dumping) piston theory gives,
for 100% alleviation

HAs __ _hF(L)u (ft/sec) (56)
W L A

Beardsley's1 wave pumping theory gives

M'HAS 2! h2w wF LU (ft/sec) (57)
W IL

Both of these give much lower power estimates than equation (55) for typical
values. Yet on the other hand, equation (55) predicts no power penalty at

all if n .. That is, for zero duct and diffusion loss; as noted earlier
This is becahse our equations simulate "energy recovery" by the fan when

the flow is negative; also, equations (56) and (57) do not allow for duct losses.

It would seem that minimizing duct and diffusion losses are of paramount impor-

tance to maximizing the efficiency of any fan modulation, heave attenuation

scheme.
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ASSUMPTIONS hw/k a 1/20 .O =0.4
IW ... .. . F ..... _ _

6.0-

l
.0#2__6_0_

-. 60 4 . .....

z

0 20 40 60 s0 100
SPEED RELATIVE TO WAVES IN KNOTS

Figure 6. Extra Fan Power Required for Complete Suppression of He~ve in
Long Waves. In Short Waves, Multiply Power by [F(L/X)]'.
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APPENDIX I

FAN CHAR~ACTERISTICS



It's usual to express the total pressure rise (AH) across a fan as

AH

pw2D2

and the nondimensional flow rate as

wD17

Thus

a J-! pa)2D2

wD3

3Q aQ a# D a#

and

Qo DAH #0o2

0 0

We are interested in cushion pressure p, which is related to H by
2I

p = All - (0 2-1(A)

where , is the total head efficiency.* This equation assumes that the

plenumtcushion) velocity is negligible compared with (Q/A).

* Head loss after the fan/Ip(Q/A)2 where A is the fan duct area



*.R - C r

aQ (I AT

0° -l0 - j( p2"P0 ~Q [!0  (1 - q) !0(- r lT

A common case (and also the lower limit on n) is for the diffusion process
to approximate the Borda-Carnot "rapid diffulion" case for which

( 1 -'T,= (1~ ) 2 -S) = 2 (1-A/S)

- where A is the total fan area, and S the cushion area.

'1

- I



APPENDIX 11

THE COMPRESSIBLE EQUATION FOR lip

33



If

+ (1 + Po/p) 1 y J2 (po/p.)(l + po/P, -

= AP/P o  V V/YQo  = (1/Qo)(dV/dt)

Then equation (11) becomes

1+gp- +P = J1  +Vj 2  (II.1)

Here F and V are the driving terms, and may be quite general. In our present
case

V = Vo -V1 sin At

" --dV = dV = - Q ol c s i
"" YQo =  o 1

• ~OV .= - Cos At

Making these subsitutions in equation (11.1)

-Vl sin nt) + /ip- p = 1+ JlYV 1 cos at (11.2)

Several simplifications immediately come to mind. For low accelerations p < 1,
so

The same assumption implies V1 << Vo" Thus

dt = Cos At (11.3)

or

A = B cos at

*. p • BJ eA t cos at dt + transient terms
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If a t, t =0f

= e~0 ~ e cos 0 dO

= (92 + A)O (9 + B A2)

Substituting for A and B

- - cos sat + sin ot(11.4
0 02 2 2IA

J 2 V 0  (2

QV1Yj1 Cos (ait - (+1.m

/- I(02V) 2+ (1Q 1)2

* ~~where O*Il 2

2o0

The incompressible flow result, equation (25), may be written as

p0  = Cos at

= D6yui Q- Cos fit (11.6)

(Also the result of putting dj/dt - 0 and J 1 in equation 11.3).

Thus the relative amplitude

:1r = (A/ocm 12 - (11.7)

(AP/Po)incomp IfJ 2V0) + 1~ 1 )2

r J, as 4 0, a result we have seen already.



The phase angle can be expressed as

rVl
Cos *2 = ry 1l = - (11.8)

Generally speaking J1  1, J2  p 0 /p,. Also

Po Vo 2wU

~2Vo p0  X iU(19

...2 w ,..!._ U(PoV W= (Hyh) Po--W) (I. 10)

which is similar in form to G/y in equation (13).

Note that r is always less than unity, according to this theory, in direct
contradiction of earlier results. But in fact, this follows from Equation 11.3.
Whenever a first order linear equation is driven by a sinusoid, its amplitude
will always be less than the value obtained when the differential is neglected.
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APPENDIX III

A SIMPLE CHECK ON FAN MODULATION POWER

FOR 100% ATTENUATION



Suppose the cushion pressure is held constant at the trim value p0. so that
the total head rise through the fan must be

0 2

The instantaneous fan power requirement will therefore be

FP AHQ = PoQ + (1- 2 112

Let
Q - %(l + Kw Cos alt) 0 %(I + K~w Cos 6)(1.)

Now in equilibrium,12

IF0 P0Q% p(%/A) 2%Q(l - liT)

p (C%/A) 2%0(I - T)= IP -

= O(P- lii (111.4)

Thus the instantaneous power can be expressed as

=IF poQo(1 + Kw cos 0) + 0o(flp - dL(l + KW Cos 0)3

or

- (1* K cos6) (1 - ndLndF(l + cKw CO)~ 15
o

T-(1 +KW COS 0) +(1 - L/ndF(1l+ 3K(wCos

2 2 3 3
+.3Kw Cos 0 +Kw cos e)

Thus the average over one cycle is

P av . TnL +_ 3 K 2  
n

which is the same as equation 48 in the main body of the report.

- so


